
Johnson-Nyquist noise for a 2D electron gas in a narrow channel

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys.: Condens. Matter 5 L469

(http://iopscience.iop.org/0953-8984/5/39/003)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 11/05/2010 at 01:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/5/39
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phyr.: Condens. Maller 5 (1993) L469-LA74. Printed in the LK 

LETTER TO THE EDITOR 

Johnson-Nyquist noise for a 2~ electron gas in a narrow 
channel 

0 M Bulashenko and V A Kochelap 
lnstitule of Semiconductor Physics, Academy of Sciences of the Ukraine, Prospekt Nauki 45, 
Kiev 252650. Ukraine 

Received 26 May 1993 

Abstract The equilibrium current fluctuations (thermal noise) for a 2~ degenerate electron 
gas bounded in a n m w  channel have been dculated wilhin ule semiclassical Bollzmann- 
equalion approach The analytical formula for lhe autoconelation function has been derived 
for the completely degenerate w e .  The associated noise speer" has a non-larenlzian shape 
with decreased rem-frequency plareau and smeared geometiical resonancer at high frequencies 
caused by the restriction on elecmn motion in the " v e r s e  d i o n  (classical sire effect). 
Measurements of lhe size-dependent noise s p e c "  would give additional information about 
the edge scattering of electrons. 

The noise properties of the electron gas in small-size conductors have attracted considerable 
interest during recent years 11-51. The transition from diffusive to ballistic transport 
was found to be accompanied by new interesting phenomena: (i) the suppression of 
shot noise [ l ,Z]: (ii) the noise redistribution towards higher frequencies ('blue shift'), 
depending on the geometrical size of the sample [3-5]; (iii) the geometiical resonances 
in the spectrum [ 5 ] ,  and so on. 

In this letter the Johnson-Nyquist noise characteristics for a two-dimensional (ZD) 
electron gas bounded in a narrow channel are presented. Within the semiclassical approach 
the autocorrelation function of the current fluctuations is calculated both analytically and by 
use of the Monte Carlo technique. The spatial correlation of the fluctuations is taken into 
account, which is essential in small-size conductors [6]. 

Consider a 2D electron gas in the x y  plane laterally restricted by the diffusely reflected 
boundaries at y = 0 and y = d .  The channel width d is assumed to be much wider than 
the Fermi wavelength. The electrons are scattered both in the bulk and at the boundaries. 
The length L in the x direction is much greater than the electron mean free path A and 
terminated by contacts for measurement of the equilibrium cwent  fluctuations. 

It is known that the contacts can disturb the current flow in the near-contact regions. 
For low-dimensional systems this point was studied, e.g. in [7]. In our model those regions 
are of the order of the channel width d and we suppose L >> d; hence, the contribution 
of the contacts to the noise phenomena can be neglected. Thus, the electron iransport is 
characterized by the parameter y = h / d ,  which is the 'degree of ballistic transport' [3-51. 
Varying y from y < 1 to y >> 1 we are going from entirely bulk scattering (diffusive 
regime) to entirely boundary scattering of electrons (ballistic or Knudsen regime of electron 
transport [4]). 
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The instantaneous short-circuit current l ( t )  through the sample of length L can be 
expressed as a sum of the instant velocities of all camers presented at the time t in the 
sample 181 

I@)= -E%; e N  = ~ / d + / i Z ; j l d k v x f ( + , k , t ) .  2 

L ;=1 

Here e is the electronic charge, r = ( x , y )  is the radius vector, k (k , ,k , )  is the 
wavevector, vr = hk,/m is the electron velocity component and m is the effective mass. 
The integration over T is taken over the channel area L x d. f(+. I C ,  t )  represents the 
electron distribution function (occupation numbers). 

From this formula the average current ( I ( [ ) )  under the equilibrium conditions is zero, 
because for this case (f(+, k, I ) )  = f&). the Fermi-Dim distribution function. But 
the instantaneous current I @ )  due to fluctuation of f(r, R ,  f )  is not zero and the current 
autocorrelation function is 

C l ( t )  = (61(0), U ( t ) )  

- - 2 1  L* (W)* / dr / dr’/ dk / dk‘ u , u ~ ( S f ( r ,  k, t )  Sf(r’, k’, 0)) (2) 

where SI ( t )  E I ( t )  - ( I ( t ) )  = I ( r ) ,  S f ( r ,  k, t )  = f(+, k, t )  - f&). In equation (2) the 
angle brackets indicate averaging over the initial time moment t = 0 (for a fixed value of 
0. 

The correlation function (Sf(r, k, t )  Sf(+’, k‘, 0)) satisfies for t =. 0 the Boltzmann 
By neglecting interaction between kinetic equation in the first set of variables [2,9]. 

electrons and assuming the scattering to be elastic one can write 

(Sf(+, k, t)6f(+‘, k‘, 0)) = 0, (3) 

The term 1/r corresponds to the collision integral in the relaxation-time approximation, 
with T being the average time between collisions in the bulk. 

Let us introduce the notation of the correlation function averaged over the longest 
dimension 

K ( y ,  k. t ;  y‘, k’) = - 1 bLd.lLd.‘ (Sf(r,k,t) 8f(+’.k‘,O)). (4) 

After integration over x ,  x’, the B o l t ”  equation for this function will be 

- + vy-  + - K ( y ,  k. I ;  y’, k’) = 0. ( a  at ay a ’> 
The term with u,(a/ax)  vanishes, being of the order of the small parameter 1/L. Using 
the expression for the equal-time correlation of the distribution function [9]. one obtains the 
initial condition for (5) in the form 

K ( y ,  k, 0; y’, k’) = 2 d  S(y - y’) S(k - k’) fo(k) (1 - fo(k)) + Kil(y, k, y‘, k‘). (6) 

The factor ( I  - fo) in the first term of the RHS arise from the Fermi statistics under 
investigation. KI is the off-diagonal term with respect to I C ,  IC’, giving a contribution for 
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the system with a fixed number of particles [9] .  Being symmetric in our problem, it does 
not contribute to the noise, since integration of (2) over kx9 k i  gives zero. Thus, the last 
term is not considered here, but in the non-equilibrium case it may be essential. 

We consider the case of fully diffuse electron scattering at the boundaries, which destroys 
any correlation between the electron flow towards the boundary and the backward electron 
flow during the surface collision time rb.  So, the boundary conditions can be given by 

K(0. k, t ;  y', k') = 0 for U, > 0 (7) 

K(d, k, t ;  y', k') = 0 for U, e 0 (8) 

for f > rb. Since rb < t, d/U& the characteristic times of the problem, we can refer the 
boundary conditions (7) and (8) to the time t = 0, the initial condition (6) remaining valid 
everywhere except the edges ( y  # 0; d ) .  Here, uF is the Fermi velocity. 

The solution of (5 )  for the function K: under conditions (6H8) can be expressed by 

K ( y ,  k, t ;  y'. k') = 2~?e-"~S(y - y' - U,') S(k - k') jo(k) [I  - jo(k) l .  (9) 

The function S(y - y' - u,t) represents the spatial correlation of the fluctuation. 
Substituting (4) and (9) into (2) and carrying out the integration over k', y and y'. Cr(t) 
becomes 

For the completely &generate case, where j o ( l  - j o )  = kBT6(E - EF), the current 
autocorrelation function (10) can be evaluated analytically 

n2 = k:/2n is the 2D electron concentration, ks is the Boltrmann constant, T is the 
temperature, and EF and kF are the Fermi energy and momentum. The parameter U is the 
time in units of the transit time of electrons between the boundaries. 

In the previous work [4] the Monte Carlo (MC) technique for calculating the velocity 
fluctuations in thin 3D metal films with diffuse surfaces has been proposed. In the present 
work on the basis of the same algorithm as in [4] the random motion of a single electron 
with the Fermi velocity (completely &generate case) in the ZD channel has been simulated. 
The only distinction was in generating the random scattering angles for 2~ geometry. 

The velocity autocorrelation function C,(t) calculated by use of the MC method is 
compared in figure 1 with the current autocorrelation function given by equation (1 1). For a 
given number of collisions (- I@) the agreement is quite good down to C ( t )  - 0.01 C(O), 
indicating that the MC procedure is correct and it can be fruitfully applied to obtain the 
thermal noise characteristics for the degenerate case. However, in order to get C r ( t )  from 
C,(f), estimated by the MC technique for a single electron with the Fermi velocity, one must 
multiply the result by the factor kBT/cF (in addition to the dimension term ne2djL). The 
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Fisure 1. Velocily antwwrelarion functions calculated by use of the Monte Carlo method (stars) 
and ox" autocorrelalion functions obtained from analytical expression ( I  I )  (full curves), bat31 
in the degencmte limit for different values of y .  The normalization c~~tans are C,o = dug 
and Cio = e'nz(ksT/m)(d/L) .  

physical meaning of this factor is the fraction of electrons near the Fermi surface taking 
part in the fluctuations. 

For a 3D thin film C r ( t )  can be also evaluated analytically by the same manner as 
equation (1  1) for the 2D case: 

with 

O < U . C l  3 1 - HU 
f (U) = { - i u - 7  U >  1 

where n~ = k;/3nz is the 3D electron concentration, A is the cross sectional area of the 
sample and the other notations are as previously defined in (1 1). This is the formula for the 
current autocorrelation function within *e Fuchs size-effect model [4, 1 I ]  for fully diffuse 
electron scattering at the boundaries. C,(r) calculated from the MC procedure [4] can be 
related to the Johnson-Nyquist noise by multiplying the results by the factor $kBT/EF (in 
addition to the dimension term n e 2 A / L )  in a similar manner to the 2D case mentioned 
above. 

Let us return to the results for the 2~ channel. The noise spectral density &(U) was 
calculated as a Fourier transform of the autocorrelation function Cf (f) (see figure 2). When 
y --f 0, U -+ 0 and f ( u )  -+ 1, we have the ordinary Johnson-Nyquist noise with the 
Lorentzian spectrum. With increasing y the low-frequency noise is suppressed with a 
redistribution toward higher frequencies and a remarkable deviation from the Lorentzian 
shape (the corresponding Lorentzian curves are shown by broken curves). One can also 
observe the smeared oscillations at frequencies corresponding to the time of flight between 
the boundaries d / u p  The inset of figure 2 illustrates this statement: extrema of S,(w) 
normalized to the corresponding Lorentzians hold at the same values of wdjuF for different 



Letter fo the Editor LA73 

scales of the channels. The origin of the oscillations is caused by the restriction on the 
electron motion in the y direction (the classical size effect), and their nature is similar to 
those in [ 5 ] ,  where size effect occurs between the contacts of the ID wire. Unlike the 1D 
case [ 5 ] ,  where geometrical oscillations are more pronounced, for the 2D channel they are 
smeared. 

w7 
Figure 2. Sgecval density of currenl Rucluations in ule degenerate limit for different y (full 
cwes). The normalization constant is S,o = 4ksT(n2e2r/m)(d/L) .  Inset: Si(w) normalized 
to the wrresponding Larenizians. 

Due to the Nyquist theorem S,(O) = 4ksTC, with G being the conductance. Hence, 
the conductivity U can be obtained from the current autocorrelation function by 

U = ( L j d j  Ci(t)dt/ksT. 1- 
For 2D and 3D cases, integrating equations (11) and (12) over the time I. and denoting 
U = I/& one gets 

The second equation is the Fuchs formula for the conductivity in thin metal films [lo]. 
Analogously the diffusion coefficients take the form (13). (14) and the corresponding 
equations coincide with those in [ 111. It should be noted that the frequency-dependent 
a ( w j  can be obtained from (11) and (12) by the same manner. 

In conclusion, the autocorrelation function for the thermal (Johnson-Nyquist) noise and 
the corresponding noise spectrum have been calculated for a 2D degenerate electron gas in 
a narrow channel with diffusely reflected boundaries. By diminishing the channel width the 
noise is redistributed toward higher frequencies with a suppression of its low-frequency 
magnitude. The noise spectrum has a non-Lorentzian shape with damped geometrical 
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resonances at frequencies corresponding to the time of flight d/uF between the boundaries. 
The Monte Carlo approach discussed in the present and the previous papers [4] may be 
usefully applied for calculating both the conductivity and the thermal noise for the electron 
gas in the region with more complicated and partially reflected boundaries. The results for 
the other geometries of the low-dimensional channels will be published elsewhere [12]. 

To verify the theoretical conclusions of this work the following experiment on 
semiconductor heterostmctures may be proposed. A narrow channel is formed in the plane 
of a 2D electron gas by a rough boundary at one edge and a specular reflected boundary, 
displaced by a voltage-operated gate, at the other. Varying the gate voltage, one can measure 
the low-frequency current noise versus channel width. As we calculated, the noise figure 
and the conductance of such channels are identical to those of the channel with diffuse 
boundaries on both sides but of twice the width. Electron scattering at the boundaries 
of narrow channels was shown to be diffuse, when it  is produced by different techniques 
(for example, by focused ion beam, chemical etching, etc [13]). The measurements of the 
equilibrium sizedependent noise, proposed here, may be used as an additional method to 
study edge scattering for 2D electron gas channels. 

This work is supported by a grant from the Ukrainian Council on Progress in Science 
and Engineering. We thank N A Zakhleniuk for discussion on the expression (6) for the 
equal-time correlation function. 
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